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Abstract— A perennial and critical question for software 
testing is: When can we stop? Apart from “when time is up,” 
many test coverage measures have been proposed and used. 
Automated test generation from a Markov model can track 
model coverage. The reliability demonstration chart uses 
sequential sampling to evaluate when the failure intensity 
observed in test is, within a certain confidence level, an 
acceptable estimate of post-release failure intensity. Embedded 
in a decision support model, this produces risk-adjusted 
guidance for whether to continue testing or to reject or accept 
the system under test. We introduce the relative proximity 
metric to indicate the extent to which test cases generated from 
a Markov model approximate complete coverage of steady 
state. Test suites generated from two case study models show 
that presentation of these metrics as a dashboard can better 
substantiate a release decision. 

Keywords-reliability, model-based testing, Kullback Distance, 
Markov model coverage 

I.  INTRODUCTION  
In software reliability engineering (SRE), two criteria can be 
used to stop testing: (1) meeting a failure intensity objective 
(FIO) and (2) meeting a minimum statistical confidence in 
the extent of testing [10]. 

 
Demonstrating achievement of a specified reliability 

target is relatively straightforward. A calculation of observed 
results is compared against the established target. If the 
observation is better than the established threshold, then the 
goal is achieved. For instance, the goal may be set as 99% 
probability of success for a given operational scenario. If one 
hundred randomly generated scenario-based tests results in a 
single system failure then the measured reliability is 0.99, 
which just meets the FIO. The question is, can we conclude 
that it’s safe or appropriate to release the system under test 
(SUT) based on this observation? 

 
Our confidence in a reliability estimate is the crux of the 

problem. The key determining factor in helping to answer 
the question “when can we stop?” is how closely the sample 
represents the population. Predictive SRE models require test 
suites composed of test cases that occur in the same relative 
frequency and interleaving as the operational profile. A 
quantitative comparison of reliability-oriented stop-test 
models appears in [8]. An approach using the RDC in 
concert with other metrics is presented in [4]. 

 

We should not stop testing when the risk of inadequate 
field reliability is too high. At the same time, we should stop 
testing when we have sufficient confidence that adequate 
observed reliability will translate to adequate field reliability. 
We believe that using three established quantitative 
measurements together can lead to better release decisions 
than applying any of them in isolation.  

 
1) Model Coverage. With the use of model-based testing to 
develop and generate an operational profile, production and 
analysis of coverage metrics that take advantage of the 
mathematical formalisms of Markov models are feasible and 
meaningful. For example, as test generation covers more 
model states and arcs, correspondingly more unique SUT 
inputs and responses are exercised. 
2) Test Progress. The well-known reliability demonstration 
chart indicates when reliability observed during testing 
indicates that the system under test will meet (or not meet) a 
field reliability goal, within a certain confidence level.  
3) Relative Proximity. For test suites that have well-defined 
and quantifiable behavior, we introduce the relative 
proximity metric. This can provide an indication of the extent 
to which the sequences in a test suite have achieved the 
steady state behavior of the Markov model. 

A. Model-based Testing for Reliability Estimation 
The idea of testing based on a model of system behavior has 
gained considerable traction over the past dozen years or so 
[7] [13]. In particular, the finite state machine has been 
adopted by many as a mechanism for storing a representation 
of complex system behavior, particular applications that 
depend heavily on state.  

 
To support software reliability evaluation, model-based 

statistical testing has been proposed [12]. Such a construct 
enables us to approximate the operational profile relatively 
closely compared to previous methods that employed an 
essentially flat profile [9]. With this approach the operational 
profile is stored in the form of Markov chain usage model 
(MCUM), a finite state machine that has probability values 
assigned to each transition. The states represent unique states 
of use; transitions represent stimuli to the system. In this 
paper, we limit our discussion to tests generated from an 
operational profile represented as an MCUM. 

 
A test suite generated from a representative operational 

profile is a precondition for reliability analysis. This may be 
met when some form of Monte Carlo simulation uses an 
operational profile to determine the frequency and sequence 



of operation test cases. With simulation, more likely 
operations will be generated more often than less likely ones; 
some model states will be reached rarely, in proportion to the 
modeled profile. Further, representation of an operational 
profile as a MCUM allows analysis of the profile and testing 
results using the well-understood mathematics of Markov 
systems. 
 

B. Model Coverage Metrics 
The main structural metrics for a MCUM are state coverage 
and transition coverage. State coverage is the ratio of the 
total number of model states to those reached in least one test 
case. Transition coverage is the ratio of the number of unique 
transition arcs in the model exercised in at least one test case.  
For example, a test suite that reaches 100% of model states 
and 100% of transitions between states would be considered 
highly covered. Achieving high structural coverage reduces 
the risk that rare input/state combinations are not exercised 
during test. However, owing to the stochastic nature of the 
model and the simulation that produces the tests, even 100% 
structural coverage of a model does not necessarily result in 
high relative proximity and an “accept.”   
 

C. Reliability Demonstration Chart *  
A reliability demonstration chart (RDC) shows when 
cumulative failure observations indicate that a failure 
intensity objective has or has not been met within a specified 
level of risk [9] [10]. It is assumed that success and failure 
data is produced by a test suite consistent with an operational 
profile [10]. An RDC graph plots cumulative number of 
failures versus normalized time of failure. Figure 1 shows an 
example chart produced by RDC.xls [5]. The graph has three 
regions that indicate (1) that the tests are strong evidence that 
the system under test (SUT) will achieve its failure intensity 
objective (green, “accept”), (2) that more testing is needed to 
make a determination (yellow, “continue”), or (3) that the 
SUT is unlikely to achieve its failure intensity objective (red, 
“reject”).  

 
The model’s three decision outputs (accept, continue, 

reject) directly reflect the producer’s tolerance for error in 
estimating the actual reliability of the SUT. The user’s 
tolerance for risk of an inappropriate decision is expressed 
with three input parameters: the producer’s risk threshold, α: 
the highest probability the producer is willing to accept that 
the model will incorrectly indicate “reject” when the SUT 
would meet or surpass its failure intensity objective; the 
customer’s risk threshold, β: the highest probability the 
producer is willing to accept that the model will incorrectly 
indicate “accept” when the SUT would not meet or surpass 
its failure intensity objective; and the discrimination ratio γ: 
the error in estimating failure intensity the developer is 
willing to accept. “The discrimination ratio is the ratio of the 
upper test MTBF to the lower test MTBF and is a measure of 
the power of the test to reach a decision quickly and, together 

                                                           
* This section adapted from [5], with permission. 

with the decision risks, define a sequential test’s accept-
reject criteria. In general, the higher the discrimination ratio, 
the shorter the test.” [1] 

 These parameters determine the graph region 
boundaries. They represent the producer’s expectation of 
both opportunity (time to market) and failure (rework and 
remediation) costs. For example, lowering risk parameter 
values expands the continue region towards the northwest 
and southeast corners. This typically means more testing will 
be needed to cross a boundary while reducing the chance that 
a satisfactory SUT is rejected or an unsatisfactory SUT is 
accepted. In a time-to-market race, higher risk tolerances 
could be used, narrowing the continue region. In either case, 
decision makers can weigh the consequences and make a 
release decision using explicit risk quantification. 

D. Relative Proximity 
The Kullback-Leibler (KL) distance is an information-
theoretic measurement of the extent to which two 
observations (samples) of the same event space (population) 
are different [6]. The KL distance has been expressed in a 
discrete form, useful for comparing two data sets, and a 
continuous form, useful for comparing sample parameters. 
When the KL distance is zero, the samples are statistically 
equivalent, although the actual content may be quite 
different.  

“…KL-divergence of “model from reality” is also 
useful even if the only clues we have about reality are 
some experimental measurements. … it tells you about 
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Figure 1 Typical Reliability Demonstration Chart 



surprises that reality has up its sleeve or, in other 
words, how much the model has yet to learn.” [14] 

 
The KL distance was originally defined between 

expected and observed discrete occurrence frequencies 
defining the entropy of an abstract communication channel, 
and is also known as “relative entropy.” We use it here to 
provide additional insight into the statistical closeness 
(proximity) of test suites. To distinguish this from the many 
extant variations on the KL distance, we call our model 
relative proximity.  

 
For software testing, both forms of the KL distance can 

provide an indication of the difference between the 
distribution expressed by a sample of tests and the 
distribution inherent in a model of the complete population 
of possible tests. It is relevant because a complex software 
system may require many thousands of tests before a test 
suite reaches all the individual behavior variations. 

 
To illustrate how relative proximity complements 

coverage and the RDC chart, we use the TGAM [3] tool 
which computes the Kullback discriminant, the “expected 
value of the log-likelihood ratio of two stochastic processes” 
[11]. This formulation of the KL distance allows direct 
comparison of the steady state probabilities for states and 
transitions (the expected usage model) and their evolving 
counterparts as a simulation produces a test suite. 

II. CASE STUDIES 

A. Stochastic Models  
The two application models described here were developed 
under government-funded research and development [3]. The 
purpose of each was to demonstrate the feasibility (but not 
the application) of model-based software testing and that 
meaningful software reliability estimation can be supported 
with stochastic model-based testing. 

MCUMs were developed for each system. Test cases 
were generated using a Monte Carlo simulation of input 
events to cause the model’s states and transitions produce a 
stream of inputs and expected resultant states. As each model 
state was reached, a pseudo-random simulation algorithm 
selected the next transition (user action.) As the number of 
generated test cases increases, the distribution of these 
sequences approaches the model distribution.   

We have used the actual numbers for tests and coverage 
to illustrate how different analyses and representations 
provide complementary information.  

B. Assumed Failure Rates 
None of the tests were executed, however, because that was 
beyond the scope of the research effort. Therefore, no actual 
test results, including failures, were produced. To 
demonstrate the dashboard, we synthesized failures for the 
generated test suites. We assumed that certain types of 
stimuli would be more likely to result in failure. An analysis 

of 25 samples of 100 tests generated from the GMD model 
described below conveyed that one of the relatively rare 
operations was observed as many as 12 times in one sample, 
while only a single time in another. Assuming that system 
failures are uniformly distributed among certain rare events 
then we believe it’s reasonable to assume that experienced 
failures may vary similarly across test samples of equivalent 
size. 

 
The failure rates used in these examples are higher than 

would be acceptable in practice and were selected to simplify 
this notional discussion of the decision support metrics.  

 

C. Word Processing Application 
This model represents a simplification of a user’s interaction 
with a word processing (WP) application. The model 
contains a set of stimuli that represent actions that can be 
taken by the user such as clicking on various icons, selecting 
options from pull-down menus and, of course, entering and 
editing text. It also contains a set of state variables that 
dictate when the user can apply a particular stimulus and 
what the expected system response is when the input is 
applied. These variables include the number of open 
documents, the size of the documents, the edit status of the 
documents, the current user view, etc. As a whole, the model 
is represented in a finite state machine where all the 
transitions (inputs) and states (unique state variable 
combinations) are contained. Each walk through the model 
represents a single usage session, where the user launches the 
application, performs a series of actions, and then exits the 
application. An example test is: 

1. Start the WP app 
2. Click New Document Icon 
3. Enter Text 
4. Click Search Icon 
5. Enter Text 
6. Click Save Icon 
7. Select File/Close 
8. Click New Document Icon 
9. Enter Text 
10. Click Save Icon 
11. Exit the WP app  
This particular sample model contains 25 unique stimuli 

and 127 usage states. It is a small, simplified model. An 
application like Microsoft Word 2007 would typically have 
hundreds of unique input types and the model would 
encompass perhaps tens of thousands of usage states. 

D. Ground-Based Midcourse Missile Defense  
The GMD model is a very small subset of a system model 
developed under a research contract for the Missile Defense 
Agency [3]. Representing usage of a Ground-based 
Midcourse Defense missile defense system, the model 
consisted of four independent and linked sub-models. The 
sub-models correspond to the four main operational modes 
of the system: No Threat, Booster Stage, Midcourse Stage 
and Terminal Stage.  

 



The GMD No Threat sub-model is used here. This covers 
GMD system behaviors starting with No Threat present state, 
and then assumes a long range missile is detected from some 
source.  It exits the sub-model once the missile ascends to the 
Booster Stage.  In it, the system detects missiles, identifies 
where they are coming from, determines the altitude of the 
missile, and allows a user sitting in a mission control center 
to switch between display screens. Typical stimuli include 
the following: SS18 Launched from Enemy A, DF5A 
Launched from Enemy B, ICBM Directed Toward 
Continental US, ICBM Directed Toward Hawaii, ICBM 
Detected Early, ICBM Altitude Increases, Tracker Selects 
ICBM View, Tracker Selects Global View, Exit to Booster 
Stage Model. 

 
The state variables in the model include Number of 

Missiles, Type of Missile, Range of Missile, Direction of 
Missile, Altitude of Missile, Current Display Screen. Each 
state in the sub-model is a unique combination of values for 
this set of usage variables. This particular sub-model consists 
of 18 stimuli (unique inputs) and 366 states. Here is a typical 
test case generated from the model:  

 
1. Start Detection 
2. SS24 Launched from Enemy A 
3. ICBM Detected Early 
4. ICBM Directed Away from US 
5. Threat Ignored 
6. DF5A Launched from Enemy B 
7. ICBM Detected Early 
8. Tracker Selects ICBM View 
9. Tracker Selects Global View 
10. ICBM Directed Toward US Hawaii 
11. Exit to Booster Stage Model 
 

III. APPLICATION AND ANALYSIS 

A. The Dashboard 
A dashboard presents summary information of critical 
measurements. The Tester’s Dashboard has three gauges: 
Model Coverage, Test Progress, and Proximity.  
1) Model Coverage is shown in a bar graph. The state and 
transition coverage data was generated along with the test 
cases using a software tool called the Test Generation and 
Analysis Module (TGAM) [3], and represents the coverage if 
all generated tests are executed. An Excel spreadsheet 
generated the bar graphs. This indicates how much modeled 
behavior has been explored in a test suite. 
2) Test Progress is shown with a reliability demonstration 
chart. The charts were generated using the open source RDC 
program [5]. It takes as input the risk parameters α, β, and γ, 
and failure observations. This indicates the sufficiency of the 
test suite in predicting the failure intensity objective. 
3) Proximity is shown with the Kullback distance graphing 
applet [2]. The graphed values were obtained from the 
TGAM tool, using the Kullback discriminant [11]. This 
indicates the extent to which the test suite has achieved the 
all of the variation allowed in the model.  

B. WP Dashboard  
Figure 2 shows successive dashboard read-outs for the WP 
model. Each corresponds to a certain number of generated 
tests. When 10 random tests were produced model state 
coverage is 60% and transition coverage is 40%. The RDC 
plot indicates no failures and no guidance after the first 10 
tests. The proximity of 184 is assumed to be minimal. 
 

After 100 tests were generated the model coverage 
metrics increased to 78% and 81%, respectively. Here a 
single failure occurred (in the fabricated failure data), but 
this is not yet visible on the RDC plot. Proximity has 
increased to 1.0, which indicates that the test suite has very 
nearly achieved all the variation allowed in the model. 
However, with 6 failures, the RDC indication is to continue 
testing.  Finally, at 3,000 tests the proximity is almost zero 
and the RDC indicates acceptance. 

 
Several samples of test data were generated from the 

Word example and proximity data was obtained for each 
sample.  Figure 3 plots the proximity for additional samples. 
The results are fairly consistent across samples. As the 
number of tests reaches 1,000, proximity approaches zero. 

C. GMD Dashboard 
Figure 4 shows successive dashboard read-outs for the GMD 
model. The information summarized in the charts and data 
for the GMD example are significantly different from the 
WP example. After 10 test cases, relatively little has been 
accomplished in terms of coverage and proximity is assumed 
to be at a minimum. Even after 100 tests model coverage is 
low and the proximity is increasing. Not until 1,000 test 
cases do we start to get an indication that progress is being 
made toward model coverage and the sample is starting to 
approximate the population through the proximity measure. 
Also note a single failure there. 

 
After 5,000 tests have been generated and executed we 

finally start to see a picture coming into focus. The state 
coverage achieved is now 76% and transition coverage 58%. 
The proximity has increased, consistent with higher 
confidence that the sample is representative. The RDC chart 
here is interesting in that it shows the failure rate is very near 
the accept region. 

 
After 10,000 tests the picture changes regarding whether 

to accept or reject the system. Model coverage creeps up just 
a little with the 5,000 additional tests. Although the model is 
relatively small (366 states), after generating 10,000 tests we 
still haven’t reached 66 of the model states, achieving 82% 
state coverage. This stems from the fact that some state/event 
combinations are very unlikely. 
 

The proximity of 6 is much closer. Note, however, that 
the failure rate has jumped significantly, moving the RDC 
indicator from near accept to near reject. The proximity trend 
is shown for the GMD system in Figure 5. 
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Figure 2 WP Model Dashboard 

 

98.40

39.84

24.53

3.630.00

20.00

40.00

60.00

80.00

100.00

120.00

10 100 1000 10000

 
 

Figure 3 Proximity Trend for WP Model 
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Figure 4 GMD Model Dashboard
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Figure 5 Proximity Trend for GMD Model 

 

IV. DISCUSSION 

A. Complementary Views Reduce Risk 
As structural model coverage goes up, proximity increases. 
For the WP model, as coverage approaches 100%, proximity 
approaches zero. This result is expected because with an 
increase in the number of tests the states and transitions 
covered by those tests should increase. As these numbers 
increase the probability distribution of the sample looks more 
and more like the distribution inherent in the model. The 
proximity should increase (indicated with decreasing KL 
discriminant values). 
 

Note, however, the different rates of change in GMD 
model coverage and proximity. Many more tests are needed 
to achieve high model coverage and low proximity. The 
word model has 127 states compared to 366 for the GMD 
model; so one could expect at least three times as many tests 
would be needed to achieve higher coverage. The primary 
explanation, however, is in the relative frequency values 
assigned to transitions in the GMD model. Some transitions 
are assigned values of 0.001 or lower, which means states 
that are reachable through those transitions will be rarely 
visited. The GMD model contains many states that would be 
reached only after hundreds of thousands of input sequences 
were simulated. 

 
For both of the figures, the RDC chart does not become 

relevant until the number of tests is relatively large. Note 
how the plotted results in the two examples differ. The WP 
model plot has a continue point and an accept point. Because 
the coverage is high and proximity nearly maximal, we can 
be more confident in the RDC model’s indication that the 
WP SUT is acceptably reliable. Absent the coverage and 
proximity information, one might wonder if the test suite 
was truly representative of the model.  

 
For the GMD example, however, following the RDC 

guidance alone could lead to prematurely accepting the 

system when in fact it may not meet target reliability 
objectives. We can interpret the jump from near accept to 
near reject as a reflection that the second set of 5,000 
generated tests reached parts of the usage model that were 
sufficiently different from the first 5,000, revealing a 
substantially different failure modes. Such a result is not 
uncommon in models that are complex and that include rare 
transitions [10].  

B. Conclusions 
This study raises additional questions. For example, we see 
that the relative proximity can also take account of expected 
and actual failure rates, providing an indication of the extent 
to which an actual failure distribution is consistent with the 
event distribution implied by a failure intensity objective. 
This could provide information to assess failures in the same 
way that the model-based relative proximity helps to assess 
structural model coverage. 
 

Our motivation in preparing the paper was to investigate 
methods for helping us to answer the question, “when is it 
OK to stop testing?” We harness two model-based testing 
measures with the familiar reliability demonstration chart to 
provide a more complete picture. Our basic conclusion is that 
employing a dashboard that includes the three methods used 
in tandem enables a more complete perspective than utilizing 
the RDC chart alone. 
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